Cluster Functional Renormalization Group

نویسندگان

  • Johannes Reuther
  • Ronny Thomale
چکیده

Functional renormalization group (FRG) has become a diverse and powerful tool to derive effective low-energy scattering vertices of interacting many-body systems. Starting from a non-interacting expansion point of the action, the flow of the RG parameter Λ allows to trace the evolution of the effective one-particle and two-particle vertices towards low energies by taking into account the vertex corrections between all parquet channels in an unbiased fashion. In this work, we generalize the expansion point at which the diagrammatic resummation procedure is initiated from a free UV limit to a cluster product state. We formulate a cluster FRG scheme where the non-interacting building blocks (i.e., decoupled spin clusters) are treated exactly, and the inter-cluster couplings are addressed via RG. As a benchmark study, we apply our cluster FRG scheme to the spin-1/2 bilayer Heisenberg model (BHM) on a square lattice where the neighboring sites in the two layers form the individual 2-site clusters. Comparing with existing numerical evidence for the BHM, we obtain reasonable findings for the spin susceptibility, magnon dispersion, and magnon quasiparticle weight even in coupling regimes close to antiferromagnetic order. The concept of cluster FRG promises applications to a large class of interacting electron systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Dependent Real-Space Renormalization Group Method

In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...

متن کامل

Functional renormalization group approach to zero-dimensional interacting systems

We apply the functional renormalization group method to the calculation of dynamical properties of zero-dimensional interacting quantum systems. As case studies we discuss the anharmonic oscillator and the single impurity Anderson model. We truncate the hierarchy of flow equations such that the results are at least correct up to second order perturbation theory in the coupling. For the anharmon...

متن کامل

A NUMERICAL RENORMALIZATION GROUP APPROACH FOR AN ELECTRON-PHONON INTERACTION

A finite chain calculation in terms of Hubbard X-operators is explored by setting up a vibronic Harniltonian. The model conveniently transformed into a form so that in the case of strong coupling a numerical renormalization group approach is applicable. To test the technique, a one particle Green function is calculated for the model Harniltonian

متن کامل

A cluster expansion approach to renormalization group transformations

The renormalization group (RG) approach is largely responsible for the considerable success which has been achieved in developing a quantitative theory of phase transitions. This work treats the rigorous definition of the RG map for classical Ising-type lattice systems. A cluster expansion is used to justify this definition in the infinite volume limit at high temperature.

متن کامل

Higher Derivative Gravity from the Universal Renormalization Group Machine

We study the renormalization group flow of higher derivative gravity, utilizing the functional renormalization group equation for the average action. Employing a recently proposed algorithm, termed the universal renormalization group machine, for solving the flow equation, all the universal features of the one-loop beta-functions are recovered. While the universal part of the beta-functions adm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013